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CRYOGENIC STRAIN GAGE TECHNIQUES USED IN FORCE BALANCE DESIGN 

FOR THE NATIONAL TRANSONIC FACILITY 

SUMMARY 

Techniques have been established for  temperature-compensation of force 
balances to  allow the i r  use over the operating temperature range of the 
National Transonic Facil i ty (NTF) without thermal control. T h i s  was 
accomplished by using a patented s t ra in  gage matching process to minimize 
inherent thermal di  fferences , and a thermal compensation procedure to reduce 
the remaining thermal ly-i nduced outputs t o  acceptabl e 1 eve1 s. A method of 
compensating for mechanical movement of the axial force measuring beam caused 
by thermally-induced stresses under transient temperatures was also included. 

INTRODUCTION 

A force balance i s  a s t ra in  gage transducer used i n  wind tunnels t o  
measure the forces and moments on aerodynamic models. 
decision to locate the NTF cryogenic transonic wind tunnel a t  Langley Research 
Center (LaRC), an extensive study program to determine the effect  of cryogenic 
temperatures (down to  -190OC) on s t ra in  gage force balances was in i t ia ted  i n  
1974. 

Prompted by the 

When the cryogenic wind tunnel concept was f i r s t  being evaluated a t  LaRC, 
force balances that  had been designed for  use i n  conventional wind tunnels 
(+20°C to +8OoC) were used i n  p i lo t  cryogenic wind tunnels u s i n g  water jackets 
or e lec t r ic  resistance heaters to  maintain normal instrument temperature while 
tunnel temperatures were reduced to as low as -19QOC (refs. 1 & 2). While the 
resul t s  of these "thermal ly-control led balance" t e s t s  were encouraging, runs 
made tha t  allowed the balance to follow tunnel temperature indicated the 
s t ra in  gages could function properly a t  cryogenic temperatures i f  thermally- 
induced outputs could be removed. Since balances could be made smaller 
(without heaters or insul a tors)  , 1 ess complex {no thermal control equipment), 
and more rel iable  ( w i t h  fewer components) i f  thermal control could be 
eliminated, a study was undertaken t o  determine the thermally-induced effects  
and to develop methods of eliminating them. T h i s  paper presents the resul ts  
of that  study. 



TESTS AND RESULTS 

Thermal Effects 

To o b t a i n  accurate force data over the large temperature range 
experienced i n  the NTF, i t  is  necessary t o  eliminate or correct for  the 
effects of any thermally-induced o u t p u t  so that  the remaining o u t p u t  is a 
function of the applied load only. These thermally-induced o u t p u t s  may appear 
as changes i n  the zero load o u t p u t  (apparent s t r a i n ) ,  in the o u t p u t  for a 
given applied load (sens i t iv i ty  s h i f t ) ,  and i n  the o u t p u t  due t o  mechanical 
deformation caused by thermal transients. Each element of the s t ra in  gage 
bridge was examined t o  determine i t s  thermal characterist ics in the 
temperature range of -190°C t o  +7OoC. These elements include: Base material , 
wiring, solder, moistureproofing, and s t ra in  gages. The f i rs t  four elements 
will  be discussed briefly followed by a more extensive discussion of the 
strain gage effects  since the s t ra in  gages are the measuring element and have 
the most significant response. 

Base material .- A maraging, h i g h  quality, 18-percent nickel , vacuum- 
remelt, s ta inless  steel was chosen as the base material for  i t s  low 
hysteresis, h i g h  strength, and acceptable cryogenic properties in impact 
strength, fracture toughness, a d dimensional s tab i l i ty .  I t  has a coefficient 
of l inear expansion of 10 x in./ in./ 'C. Thermal expansion and 
contraction can induce apparent s t ra in  since s t ra in  gages cannot distinguish 
load  s t ra in  from thermal s t ra in .  However, i n  a four-active-arm Wheatstone 
bridge, as is used on force balances where two arms are placed so they produce 
positive o u t p u t  i n  tension and two are placed so they produce positive o u t p u t  
i n  compression, the apparent s t ra in  produced in each tension gage i s  cancelled 
by the apparent s t ra in  of a compression gage. For complete cancellation, i t  
is  necessary for each gage t o  have the same thermal response characterist ics 
and for a l l  four gages (or a t  l ea s t  each tension-compression pair)  t o  follow 
any temperature changes simultaneously. These points will be covered la te r .  
The base material modulus also increases as the temperature is  lowered 
resulting i n  reduced s t ra in  w i t h  the same appl ied load, causing a decrease i n  
o u t p u t  with load  ( sens i t iv i ty  s h i f t ) .  (See reference 3 . )  

Wiring.- The silver-clad copper wire w i t h  TFE Teflon insulation used on 
c o n v e m  balances was found t o  be satisfactory for cryogenic use. I t s  
change i n  resistance w i t h  temperature is  nearly l inear  over the en t i re  
temperature range and, for the gage of wire used on a force balance, is 
usually negligible compared t o  the resistance change of the bridge. Even so,  
care i s  taken t o  keep equal length wire in each arm of the bridge, so even 
smal 1 resi  stance changes w i  11 cancel when p;baced in tension-compressi on 
arms. A small thermocouple e f fec t  (.009 vV C) was found in wire that  came 
from a particular spool. While this was considered h ighly  unusual and 
unlikely, one should be aware tha t  this i s  an e f fec t  t h a t  can be present. 
Since the thermocouple e f fec t  i s  repeatable, i n  most cases i f  i t  is  present 
i t s  e f fec t  will n o t  be isolated b u t  be compensated for  as p a r t  of the t o t a l  
temperature response dur i  ng the thermal compensation procedures that  wi 11 be 
d i  scussed 1 ater .  

Solder.- A solder recommended for cryogenic use by a s t ra in  gage manu- 
f a c t u m  composed of 93 percent lead, 5.2 gercent t i n ,  and 1.8 percent 
s i lver .  However, i t s  h i g h  melting point (299 C )  makes i t  very d i f f i cu l t  t o  use. 
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The sol der used on conventional balances tends to crystal 1 i ze when subjected 
to  cryogenic temperatures b u t  the addition of antimony prevents this 
crystal 1 i zation (ca l l  ed t i n  di  sease). 
for cryogenic appl i cat i  ons is a commerci a1 ly avai 1 ab1 e sol der tha t  contai ns 
63 percent t i n ,  36.65 percent lead, and 0.35 percent antimony w i t h  a melting 
poi n t  of 183'C. Thermal 1 y-i nduced o u t p u t  probl ems were not observed when 
u s i n g  this solder. 

Therefore, the sol der chosen to be used 

Moistureproof i ng.- The s t ra i  n gage is  encapsul ated and i s  moisture 
res< stant.  However, the temperature compensation wire and sol der jo in ts  are 
exposed making them- vu1 nerabl e to  moi sture and possi bl e shorting. -The 
application of conventional moistureproofing compounds over the s t ra in  gage 
g r i d  caused large, e r r a t i c  apparent s t ra in  shifts  a t  temperatures below 
-4OOC. When moistureproofing was appl ied only to  the exposed solder jo in ts  
and wire, there were s t i l l  small output discontinuities and sometimes 
nonlinearities induced tha t  were not there before moistureproofing. A number 
of moistureproofing compounds were tested. Those that  worked best were 
M-Bond 43 (an adhesive and moistureproofing agent), an epoxy available from 
Micro-Measurements, Inc. and M-coat B (a  n i t r i l e  rubber compound) a1 so 
available from Micro-Measurements. These compounds s t i l l  produced some 
thermally-induced apparent s t ra in  output. A bet ter  moistureproofing scheme 
was found while researching methods of protecting the balance surface from 
corrosion. The bal ance material a maragi ng 18-percent nickel s ta i  n l  ess 
s teel ,  corrodes when exposed to moisture and the natural acids and o i l s  found 
on the hands. 
dipped i n  a Teflon fluorocarbon dry lubricant, sprayed w i t h  a TFE Teflon 
coating, and then cured a t  93OC for durability. The s t ra in  gage g r i d s  are 
masked off d u r i n g  this procedure. 
balance surface from corrosion b u t  was found to be satisfactory to keep 
moisture from penetrating to uninsulated portions of the s t ra in  gage bridge 
(provided the balance is purged w i t h  dry a i r  or nitrogen while i t  i s  below the 
dew point during the warm-up cycle of any cold tes t ing) .  The Teflon coating 
can be removed by washing w i t h  a solvent whenever i t  is  necessary to  perform 
electrical  repair work or surface inspections. 

The completely gaged and wired balance was protected by being 

T h i s  Teflon coating not only protects the 

Strain Gage.- As m i g h t  be expected, the s t ra in  gages are the elements 
most sensit ive to thermal changes. To minimize thermally-induced output, the 
gages must be: (1) selected to  best match the base material on which they will 
be mounted, ( 2 )  located so they will not be subject t o  large thermal 
differences from gage t o  gage i n  the same bridge, ( 3 )  matched for similar 
thermal response character is t ics ,  and ( 4 )  compensated as a b r idge  u n i t  t o  
eliminate residual thermal effects.  Each of these procedures will be 
discussed. 

(1) Gage selection: Commercially-available s t ra in  gages are made from 
a variety of alloys for different applications. T h e  modified Karma gage 
i s  used on conventional balances and is  a good choice for cryogenic 
applications since i t  has a relatively f l a t  thermal response over a large 
temperature range and offers a choice of self-temperature-compensation 
(S-T-C) numbers that  allow optimization of gage factor and apparent 
s t ra in  response to temperature (see figure 1). 
" lot"  of alloy from which the gages are made, heat treatment determines 
the resultant S-T-C number. 

For a given "me1 t" or 

.+ 
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However, gage factor and apparent strain cannot be changed independently 
for a given S-T-C number. The gages w i t h  S-T-C numbers from 11 to 13 
were chosen for cryogenic use, w i t h  the S-T-C 11 having the l ea s t  
apparent s t ra in  s h i f t  on the chosen base material over the NTF operating 
temperature range and the S-T-C 13 for gage factor change most nearly 
opposing the modul us change to  minimize balance 1 oad sensi t ivi ty  changes 
w i t h  temperature. 
specifications. The data on gage factor change due t o  temperature was 
n o t  s u p p l i e d  b u t  would be expected to  fa l l  between the SK 09 and SK 13 
curves on figure 1. 

The SK 11 gage was a special-order gage made to  LaRC 

(2 )  Gage location: 
gages should be located where the temperature gradient is  minimized 
between gages. From figure 2 ,  i t  can be seen that  one end of the force 
balance is attached to the aerodynamic model, and the other end i s  
attached to the tunnel support ( s t i n g ) .  When there is  a temperature 
change i n  the wind tunnel, the balance i s  heated or cooled more quickly 
a t  the ends (through conduction from the model and s t i n g )  t h a n  i n  the 
middle (by convection and radiation). A temperature gradient is more 
l ikely to develop along the longitudinal axis of the balance than i n  the 
lateral  directions except i n  the axial section which will be discussed 
la te r .  Generally, the measuring beams i n  a one-piece force balance are 
designed t o  deflect  i n  simple bending; therefore, for maximum output, the 
br idge  would be located w i t h  two tension gages on one side of the beam 
and two compression gciges a t  the same longitudinal station on the other 
side of the beam. In this configuration, a l l  four gages will be near the 
same longitudinal station on the balance and should experience the same 
temperature under both transient and steady s ta te  conditions. To improve 
upon this idea one step further,  one gage on each side i s  turned 
perpendicular to the ax i s  of principal s t ress  and now measures s t ra in  
according to  Poisson's ra t io  ( fo r  s tee l ,  s t ra in  la teral  equals 
approximately 1 /3 strain 1 ongi t u d i  nal ) . The bridge is rewired so there 
is now one tension and compression gage on each side of the beam. 
i s  one-third less  total bridge output for the same load; however, each 
tension-compression pair will be even closer to  the same temperature 
d u r i n g  heating or cooling since they are adjacent gages. 

To minimize the e f fec t  of temperature gradients, the 

There 

(See figure 3 . )  

An additional benefit i s  realized w i t h  this gage configuration. I t  was 
found tha t  there was less  sensi t ivi ty  s h i f t  w i t h  temperature than 
before. Previously the sensi t ivi ty  a t  -190°C decreased .8 to  1 percent 
from the room temperature sensi t i v i  ty  . 
configuration bridge the sensi t ivi ty  decrease was 1 ess than .3 percent. 

With the Poi sson ra t io  gage 

( 3 )  Gage matching: 
placed so they are exposed t o  the same temperature they m u s t  also have 
similar temperature response characterist ics i n  order to  minimize 
thermally-induced output. Small differences i n  individual thermal 
response can be additive to  produce significant output errors. A t e s t  
was conducted t o  determine how much error  was associated w i t h  differences 
i n  individual gage temperature response. Sixteen gages were mounted in 

Even though the tension and compression gages are 
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the center of a 4 x 6 x 1 i n .  piece of maraging steel and placed inside a 
cooling chamber. A bridge completion c i r cu i t  external to  the t e s t  
chamber was connected to  each gage. The chamber temperature was lowered 
to  -190°C and then brought back t o  room temperature (approximately 45 
minutes to cool, 30 minutes to warm up) .  The  output of each bridge was 
sampled and recorded on a data system every 15OC. Following the test the 
data was reduced, plotted, and stored on the data system. A typical plot 
of 16 gage outputs is  shown i n  figure 4 .  The output under transient 
temperature conditions ( w i t h  room temperature e lectr ical  zero subtracted) 
is  plotted versus temperature. The t e s t  block was not moistureproofed, 
t h u s  the test  was terminated prior to  reaching O°C to prevent shorting. 
The two end points ( a t  -190% and 25OC) are essentially steady s ta te .  
After the t e s t  the output of each gage could be combined mathematically 
w i t h  three other gages i n  any combination. The mathematically-combined 
bridge output was examined for excessive thermally-induced errors of the 
three types: 
thermal hysteresis (1 oop) . 
Excessive steady-state thermally-induced output occurs when the four 
gages chosen for one bridge have large end-point differences. The best 
way to avoid this error i s  to choose four gages that  have nearly equal 
thermal ly-induced output a t  -190OC. 
desirable i s  to choose two tension-compression ha1 f-bridge pairs that  
have equal b u t  opposite thermally-induced output, thereby cancelling when 
they are combined i n  one bridge. 

In addition to  the steady-state end-point differences, the slope of the 
curves is  n o t  identical for a l l  gages. Combining gages w i t h  unequal 
thermal-response slopes causes the bridge output t o  be nonlinear w i t h  
temperature. 

steady-state output difference a t  -190°C, n o n l  inearity,  and 

Another method that  is less  

Some of the gages have larger thermal hysteresis t h a n  others, as 
indicated i n  figure 4.  That i s ,  the output while going cold i s  n o t  the 
same as the output a t  the same temperature while warming up.  
gages w i t h  unequal thermal hysteresis are combined into a bridge such 
tha t  this response is  additive, the bridge could have a large hysteresis 
error  under transient temperature conditions. 

If the 

To minimize the effects  of these errors i n  cryogenic s t ra in  gage bridge 
applications, a method was devised to  select  gages according t o  the i r  
thermal characterist ics before permanent instal  1 ation. T h i s  was 
accomplished by temporarily bonding 16 gages to a t e s t  block of maraging 
steel  w i t h  a cyanoacrylate adhesive (Micro-Measurements M-Bond 200) and 
making a temperature t e s t  while acquiring data a t  15OC intervals. The  
data system controller could t e s t  a l l  combinations of four gages and l i s t  
those that  f e l l  inside the operator-sel ected 1 i m i  t of end-poi n t  error ,  
nonlinearity error ,  and thermal hysteresis error. Of the three types of 
error ,  loop i s  given primary consideration since a t  this time there is  no 
method to  externally compensate for i t .  After the best combinations were 
identified,  the gages and t e s t  block were heated and he ld  a t  17OoC for 2 
hours causing the temporary bonding adhesive to  disintegrate so the gages 
can be removed without damage; t h e n  cleaned and stored as thermally 
matched groups of four. 
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( 4 )  Bridge thermal compensation: 

Non l i nea r i t y  compensation - I n  unmatched gages, second order 
nonl inear br idge output was as l a r g e  as 2150 uV (21.5 percent f u l l  
scale). The matched groups t h a t  had acceptable thermal hysteres is  
were then examined f o r  n o n l i n e a r i t y  and found t o  f a l l  w i t h i n  a range 
of -120 uV (20.2 percent f u l l  scale). A n o n l i n e a r i t y  o f  -10.2 percent 
f u l l  scale i s  considered acceptable. I f  the 20.2 percent f u l l - s c a l e  
c r i t e r i o n  cannot be met, the n o n l i n e a r i t y  can be corrected using 
manganin w i re  i n  the Wheatstone br idge c i r c u i t  since the c o e f f i c i e n t  
o f  resistance o f  manganin w i re  i s  nonl inear between -5OOC and 
-190OC. This correct ion,  however, should be avoided i f  possible f o r  
the fo l l ow ing  reasons: (1)  Manganin wi re introduces l a r g e  end p o i n t  
apparent s t r a i n  s h i f t s  which must, i n  turn, be corrected by copper 
wire; (2)  manganin w i re  i s  d i f f i c u l t  t o  solder; and (3)  the 
resistance o f  the manganin w i re  d r a s t i c a l l y  changes the room- 
temperature e l e c t r i c a l  zero (br idge imbalance). 

Apparent s t r a i n  compensation - The res iduals  l e f t  a f t e r  gage matching 
are thermal ly compensated so t h a t  the maximum deviat ion o f  any 
thermal l y - i  nduced. br idge output fa1 1 s within i0.25 percent o f  f u l l  
scale throughout the temperature range. The thermal resistance 
c o e f f i c i e n t  o f  n icke l  w i  r e  i s nonl i near i n  the cryogenic region, 
therefore cryogenic balances use copper w i re  instead o f  n icke l  w i re  
f o r  compensating the apparent s t r a i n  output o f  the bridge. 
copper w i re  has l ess  r e s i s t i v i t y  and resistance change w i t h  
temperature than nickel ,  it requires longer lengths o f  small w i re  t o  
compensate l a rge  end-point errors.  Gage matching reduces the amount 
o f  Compensation needed thereby keeping the length o f  copper wi re f o r  
br idge compensation t o  a reasonable length f o r  the space avai lable.  

Since 

Special a x i a l  thermal compensation - It was noted ea r l y  i n  the 
cryogenic research program t h a t  the ax ia l  force component appeared t o  
have a very l a rge  thermal hysteres is  output (up t o  t250 PV o r  -15 
percent f u l l  scale) under t rans ien t  condit ions. Using matched gages 
o r  even matching gages t o  g ive loops o f  the opposite s ign d i d  n o t  
a l l e v i a t e  t h i s  problem. Note t h a t  the a x i a l  sect ion o f  a’ balance i s  
mechanically very complex. (See f i g u r e  5.) 

Thermal gradients along the length o f  the a x i a l  sect ion were 
considered the most l i k e l y  cause o f  the a x i a l  output. A l l  balance 
t e s t s  were run w i t h  thermocouples permanently i n s t a l l  ed i n  three 
locat ions;  the f r o n t  measuring gage, the a x i a l  measuring beam, and 
the rea r  measuring cage. There was l i t t l e  c o r r e l a t i o n  between the 
a x i a l  thermal l y - i  nduced output and any combination o f  these 
temperatures. When the a x i a l  sect ion geometry and mass d i s t r i b u t i o n  
were considered j o i n t l y  i t  was observed t h a t  thermal gradients i ns ide  
the a x i a l  section, instead o f  along the e n t i r e  length o f  the balance, 
could be responsible f o r  the a x i a l  thermal l y - i  nduced output. When 
the upper ax ia l  sect ion between the f o r e  and a f t  f lexures has a 
d i  f f e r e n t  temperature gradient than the corresponding 1 ower ax i  a1 
sect ion between the f o r e  and a f t  f lexures,  the ax ia l  sect ion moves as 
a para1 1 e l  ogram t o  re1 i eve thermal l y - i  nduced stresses. Thi s movement 
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generates true s t ra in  which is sensed by the axial measuring beam. 
'To test  this observation, thermocouples were placed a t  the top and 
bottom of each set of flexures on one side as shown i n  figure 5. A 
temperature t e s t  was conducted from room temperature to -190°C, and 
back, while the flexure temperatures and the axial output were 
recorded by a data acquisition system. There was a strong 
correlation between the temperatures read from the thermocouples 
placed above and below the axial flexures and the axial output 
[Eo = K(T +T4-T2-T3)] which indicates tha t  the output is  proportional 

diagonal s. Temperature-sensi t ive  w i  re was pl aced a t  the four f l  exure 
locations such tha t  the wire a t  locations one and four are i n  the 
same tension leg of the bridge and the wire a t  locations two and 
three are i n  an adjacent compression leg. The change i n  resistance 
of these sensor wires caused by the different  temperatures a t  each 
location is  equal and opposite t o  that  generated by the axial bridge 
due to  the thermal ly-induced deflection, t h u s  automatically 
temperature compensating the transient temperature-induced output of 
the axial section. T h i s  procedure can reduce the axial output due to  
thermally-induced deformation from as much as two percent fu l l  scale 
error  to less  than one-half percent fu l l  scale error. 

to  the d i  t. ference i n  the temperature differential  across the two 

Final Temperature Cal i bration 

After the balance has been tgmperature compensated, a final temperature 
run is  performed and the data recorded by the data acquisition system. A 
second order f i t  is  applied to any residual apparent s t ra in  output for each of 
the six bridges. These corrections can be applied by the wind tunnel data 
reduction program. 

CONCLUSION 

Four-active-arm strain gage bridges can be used without thermal control 
to  accurately measure forces and moments i n  a cryogenic wind tunnel 
environment. In order to accomplish t h i s  the gages must be: (1) selected and 
matched for thermal characterist ics,  ( 2 )  applied using techniques and 
materials approved for cryogenic use, and ( 3 )  thermally compensated over the 
ent i re  operating temperature range. 
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